媒介昆虫与微生物相互作用研究组(王四宝)

 

研究组长:王四宝研究员

 

王四宝,博士,研究员,博士生导师,中国科学院昆虫发育与进化生物学重点实验室主任。先后入选中国科学院“引进国外杰出人才计划”(2017年终期评估优秀)、上海领军人才(2019)、科技部中青年科技创新领军人才(2019)、国家高层次人才特殊支持计划领军人才(2020)、国家百千万人才工程(2020),授予国家有突出贡献中青年专家称号。现主持国家自然科学基金重点项目(2项)、新基石研究员项目、国家基金委创新研究群体项目(骨干)、国家重点研发项目课题、盖茨基金会项目和中国科学院全球共性挑战专项项目等。研究成果以通讯作者发表在Science (2021, 2017), Cell Host & Microbe (2023), Nature Microbiology (2021), Science Advances (2020), Nature Communications (2023, 2019), PNAS (2023, 2021, 2017), Cell Reports (2022)Sci China Life Sci (2017)等国际主流学术期刊上。担任中国昆虫学会副理事长,上海市昆虫学会理事长,中国菌物学会副秘书长、中国菌物学会青年工作委员会主任,中国昆虫学会昆虫微生物组学专业委员会主任、昆虫比较免疫与互作专业委员会副主任等。20228月荣获2022年度中国科学院优秀导师称号,20239月荣获2023年中国科学院大学领雁奖。

 

主要研究方向及内容:

研究方向:媒介昆虫与微生物相互作用

研究内容:昆虫与微生物在长期博弈和协同演化过程中形成了互利共生、致病寄生和免疫防御等多样的互作关系和调节机制。蚊子是疟疾、登革热等多种疾病的传播媒介,开展蚊虫与微生物间的相互关系和互作机制的研究,将为研发蚊媒病虫害防控新技术提供理论基础和技术支撑。本实验室以蚊虫及其互作的重要微生物为研究对象,综合运用分子生物学、表观遗传学、细胞生物学、免疫学、化学生态学、微生物组学等多学科交叉研究手段,致力于探究:1)蚊虫免疫防御与病原体感染和传播的机制;2)昆虫肠道微生物稳态调节、互利共生及其介导宿主-病原体互作的分子机理;3)昆虫与微生物相互作用的表观遗传调控机制;4)蚊虫生殖行为与化学通讯机理;5)研发基于互作关系的病媒昆虫和虫媒病防控新策略。


研究队伍:

工作人员:赖屹玲,博士,副研究员;高涵,博士,副研究员;李芳,高级实验师

博士后:  王官栋

研究生:郑伟路,孙佩璐,汪丽华,李祎斐,胡文倩,贠佳琦,刘子成,杨丙辰,马芹,郑奕彤,夏天雨,洪嘉怡,李佳敏

已毕业研究生:魏舸(博士,2018届),李琼(硕士,2017届),卢海泉(硕士,2016届),崔春来(博士,2019届),孙佩璐(硕士,2019届),陈晶晶(博士,2020届),白亮(博士,2020届),王燕(博士,2021届),王官栋(博士,2021届),王历历(博士,2022届),蒋永茂(博士,2023届),董玲(博士,2023届),丁金金(硕士,2023届)

 

研究进展:

 

(1)  破译了疟蚊集群婚飞与求偶通讯的分子奥秘,为蚊虫遗传防治策略的有效实施奠定了理论和应用基础Science2021)。


(2)  阐明了蚊虫肠道微生物共生定植和拮抗疟原虫感染的分子机理,发展出利用共生菌阻断疟疾等蚊媒疾病传播的新策略

     研发出利用肠道共生菌遏制疟原虫感染和传播的治蚊防病新策略,为源头阻断疟疾等蚊媒疾病的传播提供了新思路(Science, 2017; 分离获得具有天然抗疟活性的共生细菌,揭示肠道共生菌通过分泌胞外囊泡递送效应蛋白靶向杀灭疟原虫的新机制,为源头阻断疟疾传播提供新武器(Nature Microbiology, 2021; Nature Communications, 2023; Trends in Parasitology, 2020); 揭示共生微生物适应和定植蚊虫肠道的分子机制,并发展出利用群感分子增强共生菌定植抵抗疟原虫感染的新方法(Cell Host & Microbe, 2023)。

 

(3)  揭示了生防真菌与蚊虫攻防对抗的分子机理,发展出提高生防菌杀虫效力的新方法。

     阐明了昆虫病原真菌侵染结构附着胞分化形成和膨压产生的表观遗传调控机制(Science Advances, 2020; PNAS, 2023; Sci China Life Sci, 2017);发现了miRNA介导的跨界RNAi参与调控昆虫-病原真菌攻防对抗的互作新机制(Nature Communications, 2019; PNAS, 2021),并研发出提高生防菌杀虫效力的以子之矛,攻子之盾的新方法(Cell Reports, 2022); 发现并揭示杀虫真菌操控肠道菌促进杀虫的互作新机制(PNAS, 2017)

 

代表性论文:

 

1. Jiang YM#Gao H#, Wang LH, Hu WQ, Wang GD, Wang SB* (2023). Quorum sensing-activated phenylalanine metabolism drives OMV biogenesis to enhance mosquito commensal colonization resistance to PlasmodiumCell Host Microbe  31, 1655–1667.

2. Gao H#, Jiang YM#, Wang LH#, Wang GD, Hu W, Dong L, Wang SB* (2023). Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway.  Nature Communications  14(1):5157. 

3. Wang L#, Lai Y#, Chen J, Cao X, Zheng W, Dong L, Zheng Y, Li F, Wei G, Wang SB* (2023). The ASH1-PEX16 regulatory pathway controls peroxisome biogenesis for appressorium-mediated insect infection by a fungal pathogen.  PNAS  24;120(4):e2217145120. 

4.  Ding JJ#, Cui CL#, Wang GD#, Wei G, Bai L, Li YF, Sun PL, Dong L, Liu ZC, Yun JQ, Li F, Li K, He L*, Wang SB* (2023). Engineered gut symbiotic bacterium-mediated RNAi for effective control of Anophelesmosquito larvae.  Microbiol Spectr  11(4):e0166623.

5. Wang SB* and Jacobs-Loren M* (2023). Transgenesis and paratransgenesis for the control of malaria. In: Carballar-Lejaraz , R. (Ed.). (2023). Mosquito gene drives and the malaria eradication agenda (1st ed.). Jenny Stanford Publishing, Singapore, pp 21-29.   Doi.org/10.1201/9781003308775

6.  Cui CL#, Wang Y#, Li YF, Sun PL, Jiang JY, Zhou HN, Liu JN*, Wang SB* (2022). Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy.  Cell Reports  41, 111527. 

7. Wang C, Xiao D, Dun B, Yin M, Tsega AS, Xie L, Li W, Yue Q, Wang SB, Gao H, Lin M, Zhang L, Moln r I, Xu Y (2022). Chemometrics and genome mining reveal an unprecedented family of sugar acid-containing fungal nonribosomal cyclodepsipeptides.  PNAS  119(32):e2123379119. 

8. Lai Y, Wang L, Zheng W, Wang SB*(2022). Regulatory roles of histone modifications in filamentous fungal pathogens.  Journal of Fungi  8, 565.

9. Wang GD#, Vega-Rodr guez J#, Diabate A#, Liu JL#, Cui CL, Nignan C, Dong L, Li F, Ouedrago CO, Bandaogo AM, Sawadogo PS, Maiga H, Alves E Silva TL, Pascini TV, Wang SB*(Lead Contact), Jacobs-Lorena M*(2021). Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating.  Science   371(6527):411-415.

10. Gao H#, Bai L#, Jiang YM, Huang W, Wang LL, Li SG, Zhu GD, Wang DQ, Huang ZH, Li XS, Cao J, Jiang LB, Jacobs-Lorena M, Zhan S, Wang SB* (2021). A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase.  Nature Microbiology  6:806-817.

11. Wang Y#, Cui CL#, Wang GD, Li YF, Wang SB* (2021). Insects defend against fungal infection by employing microRNAs to silence virulence-related genes.  PNAS  118(19):e2023802118. 

12. Lai YL, Cao X ,Chen JJ, Wang LL, Wei G*, Wang SB* (2020). Coordinated regulation of infection-related morphogenesis by the KMT2-Cre1-Hyd4 regulatory pathway to facilitate fungal infection.  Science Advances  6, eaaz1659.

13. Gao H, Cui CL, Wang LL, Jacobs-Lorena M*,Wang SB* (2020). Mosquito microbiota and implications for disease control.  Trends in Parasitology  36(2):98-111.

14. Cui CL, Wang Y, Liu JN, Zhao J, Sun PL, Wang SB* (2019) A fungal pathogen deploys a small RNA to attenuate mosquito immunity and facilitate infection.   Nature Communications   (2019) 10:4298.

15. Bai L, Wang L, Vega-Rodr guez J, Wang G, Wang SB(2019)A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses.  Frontiers in Microbiology  10:1580. 

16. Qu S, Wang SB* (2018) Interaction of entomopathogenic fungi with the host immune system.  Developmental and Comparative Immunology   83(2018) 96-103.

17. Wang SB*, Dos-Santos A, Huang W, Liu K, Oshaghi M, Wei G, Agre P and Jacobs-Lorena M* (2017). Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria.  Science  357(6358):1399-1402.

18. Wei G, Lai YL, Wang GD, Chen H, Li F, Wang SB* (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality.  PNAS  114 (23):5994-5999.

19. Wang CS, Wang SB (2017). Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements.  Annual Review of Entomology   62:73-90.

20. Lai YN, Chen H, Wei G, Wang GD, Li F, Wang SB* (2017). In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in mosquito.  Science China Life Science   60(8):839-851.

21. Wang D, Li S, Cheng Z, Xiao N, Cotter C, Hwang J, Li X, Yin S, Wang J, Bai L, Zheng Z, Wang SB (2015). Transmission Risk from Imported Plasmodium vivax Malaria in the China-Myanmar Border Region.  Emerging Infectious Disease    21(10):1861-4.

22. Vega-Rodr guez J, Ghosh AK, Kanzok SM, Dinglasan RR, Wang SB, Bongio NJ, Kalume DE, Miura K, Long CA, Pandey A, Jacobs-Lorena M* (2014). Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut.  PNAS  111(4):E492-500.

23. Wang SB*, Jacobs-Lorena M* (2013). Genetic approaches to interfere with malaria transmission by vector mosquito.  Trends in Biotechnology   31(3): 185-193.

24. Wang SB, Ghosh AK, Bongio N, Stebbings K, Lampe D, Jacobs-Lorena M  (2012). Fighting malaria with engineered symbiotic bacteria from vector mosquitoes.  PNAS   109(31):12734-12739.

25. Wang SB, OBrien TR, Pava-Ripoll M, and St Leger RJ  (2011). Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations.  PNAS   108(51):20449-54.

26. Wang SB, Fang W, Wang C, St Leger RJ  (2011). Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars.  PLoS Pathogens   7(6):e1002097.