空间生物学与细胞生物学研究组

郑慧琼 研究员(空间生物学与细胞生物学研究组)


研究兴趣

已知的生物都是在1g的地球重力环境中进化而来,其生长、发育和生命活动的各个方面均与地球重力环境相适应。当地球植物飞向太空后,微重力会严重地影响到植物的生长发育和代谢活动,那么,在太空中生长的植物的内在生理和遗传机制会怎样适应地球上从未有过的(微)重力新环境呢?为了回答这个问题,本研究组先后利用国家载人航天工程项目“神舟四号”、“神舟八号”飞船和“天宫二号”空间实验室,以及“实践八号”和“实践十号”返回式科学实验卫星,研究了空间微重力条件下拟南芥和水稻的生长发育、细胞生物学、基因与蛋白质表达等,获得大量的空间环境影响植物生长发育的直接证据。为了进一步了解植物对空间(微)重力适应性的分子机理,目前我们的研究工作主要聚焦于微重力对植物幼苗生长、开花和种子发育调控等几个关键发育步骤的作用,包括空间微重力或模拟微重力条件下植物表型、代谢与生理变化规律、基因与蛋白质表达及其作用机理;细胞骨架在植物向重性反应信号传导中的作用;液泡发生与发育调控机理;高压快速冷冻样品固定与电子显微镜技术等研究。

实验室现有成员:

工作人员:王丽华,谢俊燕

研究生:沈洁,孙俊飞,韩飞,吴媛媛,牟成红,牛永放

代表性论文

1、Junyan Xie, HuiQiong Zheng (2018). Arabidopsis flowering induced by photoperiod under 3-D clinostat rotational simulated microgravity. Acta Astronautica doi.org/10.1016/j.actaastro.2018.11.014

2、Lihua Wang, Fei Han, Hui Qiong Zheng (2018). Photoperiod-controlling guttation and growth of rice seedlings under microgravity on board Chinese spacelab TG-2. Microgravity Science and Technology 30(6):834-847DOI: 10.1007/s12217-018-9644-3

3、Zheng H.Q. (2018). Flowering in space. Microgravity Science and Technology 30(6):783-791 https://doi.org/10.1007/s12217-018-9626-5

4、Zhang Y, Zheng HQ* (2015). Changes of protein expression in plastid and mitochondria of Arabidopsis thaliana callus on board Chinese spacecraft SZ-8. Microgravity Science and Technology 27:387-401  DOI 10.1007/s12217-015-9431-3

5、Zheng HQ*, Han F, Le J (2015). Higher plants in space: microgravity perception, response, and adaptation. Microgravity Science and Technology 27:377-386  DOI: 10.1007/s12217-015-9428-y

6、Zhang Y, Wang L, Xie J, Zheng HQ* (2015). Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta 241:475-488 ( DOI: 10.1007/s00425-014-2196-x )

7、Shen J, Xu G, Zheng HQ* (2015). Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stress. Protoplasma DOI. 10.1007/s00709-014-0669-1, 252(1):173-180

8、Bin Q, Zheng HQ* (2013). Modulation of root skewing responses by KNAT1 in Arabidopsis thaliana. Plant J  76:380-392

9、Zheng HQ*, Staehelin AL (2011). Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiology 155:2023-2035

10、Xu GX, Tan C, Wei XJ, Gao XY, Zheng HQ*(2011). Development of secretory cells and crystal cells in Eichhornia crassipes ramet shoot apex. Protoplasma 248:257-266

11、Wei N, Tan C, Qi B, Zhang Y, Xu G, Zheng HQ*(2010). Changes in gravitational forces induce the modification of Arabidopsis thaliana silique pedicel positioning. Journal of Experimental Botany 61:3874-3884

12、Zheng HQ*, Wang H, Wei N, Chen AD, Wang LF, Zheng WB, Zhang T (2008). Live imaging technique for studies of growth and development of Chinese cabbage under microgravity in a recoverable satellite (SJ-8). Microgravity Science and Technology 20:137-143

13、Wang H, Zheng H-Q*,Sha W, Zeng R, Xia Q-C (2006). A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation. Journal of Experimental Botany  57:827-835

14、Shao M-H, Zheng H-Q, Hu Y, Liu D-H, Jang J-C, Ma H, Huang H (2004). The GAOLAOZHUANGREN1 gene encodes a putative glycosyltrasferase that is critical for normal development and carbohydrate metabolism. Plant Cell Physiology 45(10): 1453-1460

15、Yoder T, Zheng HQ, Todd P and Staehelin LA (2001). Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiology   125: 1045-1060

16、Zheng HQ*, Staehelin AL (2011). Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiology 155:2023-2035