个人信息

博士生导师
研究员

2020年获得国家高层次人才特殊支持计划领军人才、国家百千万人才工程;2019年入选科技部中青年科技创新领军人才


Email: sbwang@cemps.ac.cn
个人网页: https://sippe.ac.cn/sbwang/

研究方向

媒介昆虫与微生物相互作用

王四宝

个人简介

2013年2月- 至今,中国科学院上海生命科学研究院 植物生理生态研究所,研究员,研究组长
2009年9月- 2013年2月,美国约翰霍普金斯大学分子微生物与免疫学系,博士后
2007年1月- 2009年8月,美国马里兰大学昆虫学系,博士后
2003年9月- 2007年1月,中国科学院上海生命科学研究院,博士
先后入选中国科学院“引才计划”(2017年终期评估优秀)、上海领军人才(2019)、科技部中青年科技创新领军人才(2019)、国家高层次人才特殊支持计划领军人才(2020)、国家百千万人才工程(2020),授予国家有突出贡献中青年专家称号。现主持国家自然科学基金重点项目(2项)、新基石研究员项目、国家基金委创新研究群体项目(骨干)、国家重点研发项目课题、盖茨基金会项目和中国科学院全球共性挑战专项项目等。研究成果以通讯作者发表在Science (2021,2017),Cell Host & Microbe (2023),Nature Microbiology (2021),Science Advances (2020),Nature Communications (2023,2019),PNAS (2023,2021,2017),Cell Reports (2022)和Sci China Life Sci (2017)等国际主流学术期刊上。担任中国科学院昆虫发育与进化生物学重点实验室主任,中国昆虫学会副理事长,上海市昆虫学会理事长,中国菌物学会副秘书长、中国菌物学会青年工作委员会主任,中国昆虫学会昆虫微生物组学专业委员会主任、昆虫比较免疫与互作专业委员会副主任等。2022年8月荣获2022年度“中国科学院优秀导师”称号,2023年9月荣获2023年中国科学院大学领雁奖。

研究工作

昆虫与微生物在长期博弈和协同演化过程中形成了互利共生、致病寄生和免疫防御等多样的互作关系和调节机制。蚊子是疟疾、登革热等多种疾病的传播媒介,开展蚊虫与微生物间的相互关系和互作机制的研究,将为研发蚊媒病虫害防控新技术提供理论基础和技术支撑。本实验室以蚊虫及其互作的重要微生物为研究对象,以生物互作为主线,综合运用分子生物学、表观遗传学、细胞生物学、免疫学、化学生态学、微生物组学等多学科交叉研究手段,致力于探索:1)蚊虫免疫防御与病原体感染和传播的机制;2)昆虫肠道微生物群稳态调节、互利共生及其介导宿主-病原体互作的分子机理;3)蚊虫与微生物相互作用的表观遗传调控机制;4)蚊虫生殖行为与化学通讯机理;5)研发基于互作关系的蚊媒病虫害防控新策略。

主要成果

(1)破译了疟蚊集群婚飞与求偶通讯的分子奥秘,为蚊虫遗传防治策略的有效实施奠定了理论和应用基础(Science,2021)。

(2)阐明了蚊虫肠道微生物共生定植和拮抗疟原虫感染的分子机理,发展出利用共生菌阻断疟疾等蚊媒疾病传播的新策略。
研发出利用肠道共生菌遏制疟原虫感染和传播的“治蚊防病”新策略,为源头阻断疟疾等蚊媒疾病的传播提供了新思路(Science,2017);分离获得具有天然抗疟活性的共生细菌,揭示肠道共生菌通过分泌胞外囊泡递送效应蛋白靶向杀灭疟原虫的新机制,为源头阻断疟疾传播提供新武器(Nature Microbiology,2021;Nature Communications,2023;Trends in Parasitology,2020);揭示共生微生物适应和定植蚊虫肠道的分子机制,并发展出利用群感分子增强共生菌定植抵抗疟原虫感染的新方法(Cell Host & Microbe,2023)。

(3)揭示了生防真菌与蚊虫攻防对抗的分子机理,发展提高生防菌杀虫效力的方法。
阐明了昆虫病原真菌侵染结构附着胞分化形成和膨压产生的表观遗传调控机制(Science Advances,2020;PNAS,2023;Sci China Life Sci,2017);发现了miRNA介导的跨界RNAi参与调控昆虫-病原真菌攻防对抗的互作新机制(Nature Communications,2019;PNAS,2021),并研发出提高生防菌杀虫效力的“以子之矛,攻子之盾”的新方法(Cell Reports,2022);发现并揭示杀虫真菌操控肠道菌促进杀虫的互作新机制(PNAS,2017)。

    1. Jiang YM#,Gao H#,Wang LH,Hu WQ,Wang GD,Wang SB* (2023). Quorum sensing-activated phenylalanine metabolism drives OMV biogenesis to enhance mosquito commensal colonization resistance to Plasmodium. Cell Host Microbe 31,1655–1667.

    2. Gao H#,Jiang YM#,Wang LH#,Wang GD,Hu W,Dong L,Wang SB* (2023). Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway. Nature Communications14(1):5157.

    3. Wang L#,Lai Y#,Chen J,Cao X,Zheng W,Dong L,Zheng Y,Li F,Wei G,Wang SB* (2023). The ASH1-PEX16 regulatory pathway controls peroxisome biogenesis for appressorium-mediated insect infection by a fungal pathogen. PNAS 24;120(4):e2217145120.

    4. Ding JJ#,Cui CL#,Wang GD#,Wei G,Bai L,Li YF,Sun PL,Dong L,Liu ZC,Yun JQ,Li F,Li K,He L*,Wang SB* (2023). Engineered gut symbiotic bacterium-mediated RNAi for effective control of Anopheles mosquito larvae. Microbiol Spectr.11(4):e0166623.

    5. Wang SB* and Jacobs-Loren M*. (2023). Transgenesis and paratransgenesis for the control of malaria. In: Carballar-Lejarazú,R. (Ed.). (2023). Mosquito gene drives and the malaria eradication agenda (1st ed.). Jenny Stanford Publishing,Singapore,pp 21-29. Doi.org/10.1201/9781003308775

    6. Cui CL#,Wang Y#,Li YF,Sun PL,Jiang JY,Zhou HN,Liu JN*,Wang SB* (2022). Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy. Cell Reports 41,111527.

    7. Wang C,Xiao D,Dun B,Yin M,Tsega AS,Xie L,Li W,Yue Q,Wang SB,Gao H,Lin M,Zhang L,Molnár I,Xu Y (2022). Chemometrics and genome mining reveal an unprecedented family of sugar acid-containing fungal nonribosomal cyclodepsipeptides. PNAS 119(32):e2123379119.

    8. Lai Y,Wang L,Zheng W,Wang SB* (2022). Regulatory roles of histone modifications in filamentous fungal pathogens. Journal of Fungi 8,565.

    9. Wang GD#,Vega-Rodríguez J#,Diabate A#,Liu JL#,Cui CL,Nignan C,Dong L,Li F,Ouedrago CO,Bandaogo AM,Sawadogo PS,Maiga H,Alves E Silva TL,Pascini TV,Wang SB+*(Lead Contact),Jacobs-Lorena M+* (2021). Clock genes and environmental cues coordinate Anopheles pheromone synthesis,swarming,and mating. Science 371(6527):411-415. (+These authors contributed equally to this work) https://doi.org/10.1126/science.abd4359.

    10. Gao H#,Bai L#,Jiang YM,Huang W,Wang LL,Li SG,Zhu GD,Wang DQ,Huang ZH,Li XS,Cao J,Jiang LB,Jacobs-Lorena M,Zhan S,Wang SB* (2021). A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase. Nature Microbiology 6: 806-817. https://doi.org/10.1038/s41564-021-00899-8.

    11. Wang Y#,Cui CL#,Wang GD,Li YF,Wang SB* (2021). Insects defend against fungal infection by employing microRNAs to silence virulence-related genes. PNAS 118(19):e2023802118. https://doi.org/10.1073/pnas.2023802118.

    12. Lai YL,Cao X,Chen JJ,Wang LL,Wei G*,Wang SB* (2020). Coordinated regulation of infection-related morphogenesis by the KMT2-Cre1-Hyd4 regulatory pathway to facilitate fungal infection. Science Advances. 6,eaaz1659. https://doi:10.1126/sciadv.aaz1659

    13. Gao H,Cui CL,Wang LL,Jacobs-Lorena M*,Wang SB*. (2020). Mosquito microbiota and implications for disease control. Trends in Parasitology 36(2):98-111. https://doi.org/10.1016/j.pt.2019.12.001

    14. Cui CL,Wang Y,Liu JN,Zhao J,Sun PL,Wang SB* (2019) A fungal pathogen deploys a small RNA to attenuate mosquito immunity and facilitate infection. Nature Communications (2019) 10:4298. https://doi.org/10.1038/s41467-019-12323-1

    15. Wang SB*,Dos-Santos A,Huang W,Liu K,Oshaghi M,Wei G,Agre P and Jacobs-Lorena M*. (2017) Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science. 357(6358):1399-1402. https://doi:10.1126/science.aan5478

    16. Wei G,Lai YL,Wang GD,Chen H,Li F,Wang SB* (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. PNAS 114 (23):5994-5999. https://doi.org/10.1073/pnas.1703546114

    17. Bai L,Wang L,Vega-Rodríguez J,Wang G,Wang SB*. 2019. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses. Frontiers in Microbiology 10:1580. https://doi.org/10.3389/fmicb.2019.01580

    18. Wang CS,Wang SB (2017). Insect pathogenic fungi: genomics,molecular interactions,and genetic improvements. Annual Review of Entomology 62:73-90. https://doi.org/10.1146/annurev-ento-031616-035509

    19. Wang SB*,Jacobs-Lorena M* (2013) Genetic approaches to interfere with malaria transmission by vector mosquito. Trends in Biotechnology 31(3):185-193. https://doi.org/10.1016/j.tibtech.2013.01.001

    20. Wang SB,Ghosh AK,Bongio N,Stebbings K,Lampe D,Jacobs-Lorena M (2012) Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. PNAS 109(31):12734-12739. https://doi.org/10.1073/pnas.1204158109

    21. Wang SB,O′ Brien TR,Pava-Ripoll M,and St Leger RJ (2011) Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations. PNAS 108(51):20449-54. https://doi.org/10.1073/pnas.1113824108

    22. Wang SB,Fang W,Wang C,St Leger RJ (2011) Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathogens,7(6):e1002097. https://doi.org/10.1371/journal.ppat.1002097

    23. Vega-Rodríguez J,Ghosh AK,Kanzok SM,Dinglasan RR,Wang SB,Bongio NJ,Kalume DE,Miura K,Long CA,Pandey A,Jacobs-Lorena M* (2014). Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut. PNAS 111(4):E492-500. https://doi.org/10.1073/pnas.1315517111

    24. Lai YN,Chen H,Wei G,Wang GD,Li F,Wang SB* (2017) In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in mosquito. Science China Life Science 60(8):839-851.

    25. Qu S,Wang SB*. (2018) Interaction of entomopathogenic fungi with the host immune system. Developmental and Comparative Immunology 83(2018) 96-103. https://doi.org/10.1016/j.dci.2018.01.010

    26. Wang D,Li S,Cheng Z,Xiao N,Cotter C,Hwang J,Li X,Yin S,Wang J,Bai L,Zheng Z,Wang SB (2015). Transmission Risk from Imported Plasmodium vivax Malaria in the China-Myanmar Border Region. Emerging Infectious Disease 21(10):1861-4. https://doi:10.3201/eid2110.150679