个人信息

博士生导师
研究员
2013年获得“国家杰出青年基金”
Email: jmgong@sibs.ac.cn
个人网页:

研究方向

植物营养调控及植物修复机理分析

龚继明

个人简介

1991年9月-1995年7月,在北京师范大学生物学专业学习,获得学士学位;
1995年9月-2000年7月,在中科院遗传所学习,获得博士学位;
2000年9月-2005年12月,在美国加州大学圣地亚哥分校做博士后;
2005年12月-至今,在中科院上海生命科学研究院植物生理生态研究所任课题组长, 博士生导师。

2006年获得中科院“百人计划”和上海市“科技启明星”,2011年获得赛诺菲-生科院“优秀青年人才”奖,2013年获得”国家杰出青年科学基金”,2015年获得科技部“中青年科技创新领军人才”,2016年获得中组部“万人计划”领军人才称号。
主要从事植物营养调控及植物修复的分子机理研究,对镉、氮等矿质元素吸收分配的分子机理进行研究,在Nature Biotech, Nature Communications, Plant Cell, PNAS等杂志发表成果多项。主持过973、863、转基因专项、先导专项以及自然科学基金等国家重点科研计划。
现任中国科学院植物生理生态研究所副所长、学术委员会主任;植物分子遗传国家重点实验室主任;中国植物生理学会植物修复生物学专业委员会主任;

研究工作

以拟南芥、水稻及其它特化植物为研究材料,系统研究植物体内离子运输及定向分配的分子机理,解决植物营养高效和重金属污染植物修复的基础理论问题。

1)植物碳氮代谢的耦联与解耦联
围绕植物碳氮代谢的耦联与解耦联这一生理现象,分离其关键的分子调控开关,阐明其调控网络,解释改生理过程如何调节植物体内的能量分配, 从而协同植物的生长发育及环境适应能力;

2)重金属低积累水稻的分子遗传基础
结合数量遗传学、离子组学和经典分子生物学技术,系统分析水稻种质资源,鉴定籽粒重金属积累相关调控基因和调控网络,为培育籽粒重金属低积累的修复型水稻奠定基因资源和理论基础;

3)重金属超富集分子机理
以景天科超富集植物为模式材料, 系统研究重金属超富集机理,并比较研究不同超富集机理的进化机制,为培育适应不同生境的修复植物提供理论基础;

主要成果

1)揭示了SINAR(Stress-initiated Nitrate Allocation to Roots)的分子调控基础及生物学意义
碳(光合作用)氮(矿质营养)代谢的偶联和解偶联是植物生理学中一个经典科学问题,但是其分子调控基础一直不清楚。有研究认为:作为陆生植物最主要氮源的硝态氮一旦进入植物体后,大多会通过长途转运到植物的地上部位,在那里利用光合作用及光呼吸提供的碳骨架、能量和还原力,将无机氮转化成有机氮。由于这种氮同化的方式能够将碳、氮代谢直接偶联起来,具有能量进化优势,因此成为大多数绿色植物的优先选择(Smirnoff and Stewart,1985)。但一个重要的生理现象也反复被生理学家们所观察到:逆境胁迫如低温、弱光、盐害、重金属等都会导致更多硝酸根向根部分配,这一明显违反能量进化优势原则的“硝酸根逆向再分配”过程的生物学意义是什么?其调节机理如何?一个简单而较有影响力的假说是:逆境如镉胁迫导致蒸腾流减弱,从而被动降低了硝酸根向地上部位的运输,间接导致了硝酸根在根部的积累(Hernandez et al., 1997)。该假说的核心是:硝酸根逆向再分配只是一种被动抑制过程的后果。
我们的研究则表明这一过程受到主动的调控,并发现NRT1.8(硝酸根木质部卸载)和 NRT1.5(硝酸根木质部装载)作为两个重要的分子开关,通过精细的负向协同表达调节着硝酸根在植物地上和地下部位间的分配,并调控植物对重金属Cd的耐受性(Li et al., 2010, Plant Cell 22:1633-)。文章发表后,在学术界引起广泛关注和高度评价。Journal of Molecular Cell Biology发表了专论文章 “Keeping Nitrate in the Roots: An Unexpected Requirement for Cadmium Tolerance in Plants”。在Faculty of 1000 中,我们的成果在发表后被多位权威专家点评推荐,而且被收录进国际植物营养权威教科书Marschner’s Mineral Nutrition of Higher Plants (第三版,P138)。迄今论文已经被引用超过170次(Web of Science),被标记为“高被引论文”(领域内前1%最优秀论文)。进一步的研究发现NRT1.8和NRT1.5调控的硝酸根再分配和碳氮代谢的解偶联是植物面对逆境胁迫的一个共通机制(Plant Physiol 2012a, 159:1582-),而且植物通过乙烯/茉莉酸-NRT1.5/NRT1.8功能模块整合多种逆境信号与营养信号,从而精细调控植物在逆境耐受和生长之间保持动态平衡(Plant Cell 2014, 26:3984-)。最近,我们更发现碳氮代谢解耦联导致的后果之一是植物叶片在缺硝酸根时的早衰,从而揭示出NRT1.5可能作为重要信号的调节器(Mol Plant 2016, 9:461-)。

2) 系统阐述液泡区隔容量(VSC)与离子长途转运的关系
植物成熟组织细胞的液泡可以达到细胞总体积的80%,是储存、区隔金属元素的主要细胞器。然而液泡通过储存或释放这些金属元素对调节它们在植物体内的长途转运的功能一直被人们忽视。我们早先的研究表明当植物螯合肽(Phytochelatins,PCs)在根中大量合成时,并不如预期那样有更多的Cd滞留根部,而是大量向地上部转运,预示PCs调控的Cd的液泡区隔容量(Vacuolar sequestration capacity, VSC)可能与其长途转运具有某种关联(PNAS 2003, 100:10118-)。进一步的研究通过将介导PCs-Cd螯合物向液泡转运的转运蛋白SpHMT1定向表达在植物的根部,有效阻控了包括Cd在内的多种重金属向地上部位的长途转运(Plant Physiol 2012b, 158:1779-)。因此,我们应邀撰写了一篇综述,系统阐释了VSC调控植物体内元素定向分配的学术思想(Invited review: Front in Plant Sci 2014, 5:19)。该思想被越来越多的来自水稻中Cd高积累调控等工作验证。我们实验室发现水稻旗叶中调控液泡Fe/Zn分隔的OsVIT1/2基因通过调控VSC,从而调节Fe/Zn在源(旗叶)库(种子)间的再分配(Plant J, 2012, 72:400-);最近在超积累植物伴矿景天中也观察到根部VSC调控与Cd向地上部超积累的相关关系 (Plant Cell Environ 2017, doi: 10.1111/pce.12929),进一步表明VSC调控与离子定向运输是一个可应用于实际生产的普遍性规律。

3) 在发掘中国特有超积累植物并解析其分子基础方面取得重要成果
超积累植物由于能高效吸收并在地上部位积累、耐受极高浓度的重金属而成为研究植物对矿质元素的转运与耐受的模式物种。对其超积累和超耐受重金属机理的解析能够为植物修复技术的发展以及农作物的定向改良提供理论基础和基因资源。然而,先前的研究几乎局限于两种欧洲的十字花科超积累植物,其超积累机制是否适用于欧洲以外的生境仍不得而知。伴矿景天是近年在华东地区发现的一种景天科Cd/Zn超积累新物种,是我国特有的种质资源。经过多年努力,我们首次从系统生物学角度证明了细胞壁是伴矿景天地上部储存镉的主要部位,而且阐明了伴矿景天细胞壁果胶成分中含有较高比例的羧基可能是其细胞壁高效率螯合镉的主要原因(Mol Plant 2016, doi: 10.1016/j.molp.2016.12.007);克隆了SpMTL基因,并提出关键蛋白在一级结构上的改变以及所导致的功能增强可能代表了超积累植物适应环境的一种普适机制(Plant Cell Environ, 2017, doi: 10.1111/pce.12929);这些研究结果促进了人们更全面系统地了解超积累植物富集和耐受重金属的机理。

    1.        Zhang G-B, Meng S, Gong J-M*. (2018) The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation.  Int. J. Mol. Sci. 19(11), 3535; https://doi.org/10.3390/ijms19113535

    2.        Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong J-M*. (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications. DOI: 10.1038/s41467-018-03088-0

    3.        Fu Y-L*, Ma H-L, Chen S-Y, Gu T-Y, Gong J-M (2018). CAU1 suppresses ANAC055 to fulfill the non-canonical proline-mediated drought tolerance pathway. J Exp. Bot. 69 (3): 579-588

    4.        He Y-N, Peng J-S, Cai Y, Liu D-F, Guan Y, Yi H-Y, Gong J-M* (2017). Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis. Scientific Reports. DOI:10.1038/s41598-017-06744-5

    5.        Peng J-S, Ding G, Meng S, Yi H-Y, Gong J-M* (2017). Enhanced metal tolerance correlates with heterotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola. Plant Cell & Environ doi: 10.1111/pce.12929

    6.        Peng J-S, Wang Y-J, Ding G, Ma H-L, Zhang Y-J, Gong J-M* (2017)  A pivotal role of cell wall in Cd accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Mol Plant 10: 771-774

    7.        Meng S, Peng J-S, He Y-N, Zhang G-B, Yi H-Y, Fu Y-L, Gong J-M* (2016) Arabidopsis NRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level. Molecular Plant 9: 461-470

    8.        Fu Y-L*, Yi-H-Y, Bao J, Gong J-M (2015) LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato. FEBS Letters. 589:1072-1079

    9.        Zhang G-B, Yi H-Y, Gong J-M* (2014) The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell 26: 3984-3998

    10.    Sophie Le′ ran, Kranthi Varala, Jean-Christophe Boyer, Maurizio Chiurazzi,Nigel Crawford, Franc?oise Daniel-Vedele, Laure David, Rebecca Dickstein,Emilio Fernandez, Brian Forde, Walter Gassmann, Dietmar Geiger,Alain Gojon, Ji-Ming Gong, Barbara A. Halkier, Jeanne M. Harris,Rainer Hedrich, Anis M. Limami, Doris Rentsch, Mitsunori Seo,Yi-Fang Tsay, Mingyong Zhang, Gloria Coruzzi, and Beno??t Lacombe (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science. 19:5-9

    11.    Peng J-S and Gong J-M* (2014) Vacuolar sequestration capacity and long-distance metal transport in plants. Frontiers in Plant Science Volume 5 Article 19 (Invited Review).

    12.    Peng J-S, Ding G, Yi H-Y, Gong J-M* (2014) Cloning and functional analysis of phytochelatin synthase gene from Sedum plumbizincicola. Plant Physiology Journal 50 (5): 625~633.

    13.    Fu Y-L, Zhang G-B, Lv X-F, Guan Y, Yi H-Y, Gong J-M* (2013) Arabidopsis histone methylase CAU1/PRMT5/SKB1 acts as an epigenetic suppressor of the calcium signaling gene CAS to mediate stomatal closure in response to extracellular calcium. Plant Cell 25:2878-2891.

    14.    Ding G, Peng J S, Zhang G B, Yi HY, Fu YL, Gong JM* (2013) Regulation of the phytochelatin synthase gene AtPCS2 in Arabidopsis thaliana. SCIENTIA SINICA Vitae 43:1112-1118.

    15.    Zhang Y, Xu Y-H, Yi H-Y, Gong J-M* (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant Journal. 72:400-410

    16.    Huang J, Zhang Y, Peng J-S, Zhong C, Yi H-Y, Ow DW, Gong J-M*. (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiology. 158:1779-1788

    17.    Li H-M, Chen H, Yang Z-N, Gong J-M*. (2012) Cdi gene is required for pollen germination and tube growth. FEBS Letters. 586:1027-1031

    18.    Chen C-Z, Lv X-F, Li J-Y, Yi H-Y, Gong J-M* (2012) Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiology. 159: 1582-1590

    19.    Li J-Y, Fu Y-L, Pike S, Bao J, Tian W, Zhang Y, Chen C-Z, Li H-M, Huang J, Li L-G, Schroeder JI, Gassmann W, Gong J-M*. (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell. 22: 1633-1646

    20.    Sadi BB, Vonderheide AP, Gong J-M, Schroeder JI, Shann JR, Caruso JA. (2008) An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana. J Chromatogr B Analyt Technol Biomed Life Sci.  861: 123-129

    21.    Gong J-M, Waner DA, Horie T, Li S-L, Horie R, Abid KB, Schroeder JI. (2004) Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proc Nat Acad Sci USA 101, 15404-15409.

    22.    Gong J-M, Lee DA, Schroeder JI. (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Nat Acad Sci USA 100 (17): 10118-10123

    23.    Lahner B, Gong J-M, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI & Salt DE. (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotechnology 21, 1215-1221

    24.    Kong J#, Gong J-M#, Zhang Z-G, Zhang J-S, Chen S-Y. (2003) A new AOX homologue gene OsIM1 from rice (Oriza Sativa L.) with an alternative splicing mechanism under salt stress.  Thero. Appl. Genet. 107: 326-331

    25.    Gong J-M, Zheng X-W, Du B-X, Qian Q, Chen S-Y, Zhu L-H, He P (2001) Comparative study of QTLs for agronomic traits of rice (Oriza sativa L.) between salt stress and nonstress environment. Science in China (Series C). 44(1), 73-82

    26.    Gong J-M, He P, Qian Q, Shen L-S, Zhu L-H, Chen S-Y. (1999) Identification of salt-tolerance QTL in rice (Oryza Stiva L.)   Chinese Science Bulletin  44(1): 68-71

    27.    Gong J-M, Chen S-Y. (1999)  The essential role of ion homeostasis and related signal cascades on salt tolerance in cells.  Progress in Biotechnology  19 (6): 2-8

    28.    Gong X-Q, Liu F, Gong J-M, Chen S-Y. (1998) Isolation and mapping of bacterial artificial chromosome (BAC) clone containing telomere-associated sequence.  Science in China 41(6): 617-622