个人信息

博士生导师
研究员

Email: zhuxg@cemps.ac.cn
个人网页:

研究方向

植物系统生物学

朱新广

个人简介

1999.6 中国科学院植物研究所光合作用研究室,获硕士学位
2004.8 美国伊利诺伊大学植物系,获博士学位
2004.8-2006.3美国伊利诺伊大学植物系,博士后
2006.3-2008.8美国伊利诺伊大学植物系,研究助理教授
2008.8-2017.7 中国科学院上海生命科学研究院 研究员,中科院-马普青年科学家小组组长
2017.7-现在 中国科学院分子植物科学卓越创新中心(植物生理生态研究所) 研究员

朱新广研究员长期开展光合作用系统生物学研究,构建了涵盖从代谢、细胞、叶片、个体、群体多层次的光合作用系统模型,整合各个尺度模型成功构建数字植物模型,以此为基础发现了一系列提高光能利用效率的新靶点,支持了作为高光效育种改良及栽培方案优化实践;长期开展C4光合作用进化及改造研究,在C4光合途径划分、进化路线、C3向C4光合途径改造方案等研究领域做出系统性工作;建立了整合作物光合作用表型组平台。由于发现提高光合效率的新途径,2013年被国际光合作用协会授予“Melvin Calvin - Andrew Benson Award”。曾任Global Change Biology Bioenergy 编委;现任Plant Cell and Environment, Frontiers in Plant Physiology,Royal Society Open Science 和 Frontiers in Plant Systems Biology编委,创立in silico Plants 杂志,是F1000Prime的faculty,创立数字植物网络计算平台;目前已培养博士生14名,硕士生6名,博士后14名;发表申请专利17项,发表文章140多篇,被引用13000次以上,H index 49,被爱思唯尔评为2020年中国最高引名单。

研究工作

主要开展光合作用系统生物学相关研究,包括利用系统生物学方法,建立多尺度光合作用系统模型,挖掘并实现提高光能利用效率的新途径;利用合成生物学手段提高作物光能利用效率,为高光效育种、高光效栽培提供全新技术途径;建立作物系统生物学研究平台,支持国际植物系统生物学研究;C4光合作用进化、发育及改造研究。

主要成果

粮食事关国计民生,粮食安全举世关注。解决粮食安全的重要途径是提高作物单产。近十多年来,我国主要作物单产徘徊不前,粮食增产受到了瓶颈制约。大量理论及大田试验表明,提高作物的光能转化效率是提高作物单产的一条有效的途径。朱新广博士以作物高产为研究目标,长期开展作物高光效研究。团队工作不仅直接支持作物高光效育种,而且为我国碳达峰、碳中和提供植物解决方案。主要成绩包括:

1、建立数字植物模型体系:建立了代谢、细胞、器官、个体、群体等层次上的系统模型,建立数字植物模型体系;建立了基于贝叶斯框架的模型参数估计算法,为模型-数据耦合提供新途径;发展了一系列模型参数化所需的测量手段;连同国际同行,建立 in silico Plants杂志,推动植物系统生物学发展。

2、系统探明提供光能利用效率的新靶标:发现一系列提高光能利用效率的新靶标,其中包括改变细胞壁和叶绿体被膜透性及提高叶绿体中碳酸酐酶活性以提高对叶绿体CO2供给;发现降低光合天线提高冠层光合效率;提高EmBP1表达以提高高光下的光合效率;发现ChSDG控制低光下光合效率;发现NHX1控制闪动光下的气孔开关速度。这些靶标共同形成高光效元件库,可支持作物高光效育种。

3、独立研发出具有自主知识产权的作物光合表型平台:该平台包括冠层光合-蒸腾速率测量设备、非叶光合器官气体交换测量仪器、植物三维重建设备、田间移动式光合表型平台,为大规模田间作物的高光效模块挖掘奠定了技术支持。

4、阐明C4光合作用进化分子历程:我们以具有不同进化阶段的黄顶菊属的不同物种为材料,系统研究了C4光合作用进化的分子历程,发现C4进化不是线性的,而存在关键转折点。

5、发展蔚蓝农业,建立新型农业系统:同中国科技大学刘文教授、我所陈金星教授合作,结合植物工厂与光伏发电,建立蔚蓝全新农业模式,农业减排增汇提供新策略。

    1. Fusang Liu, Qingfeng Song*, Jinke Zhao, Linxiong Mao, Hongyi Bu, Yong Hu, and Xin-Guang Zhu*. Canopy occupation volume as an indicator of canopy photosynthetic capacity. New Phytol, 2021.
    https://doi.org/10.1111/nph.17611

    2. Hong-Long Zhao, Tian-Gen Chang, Yi Xiao, Xin-Guang Zhu*. Potential Metabolic Mechanisms for Inhibited Chloroplast Nitrogen Assimilation under High CO2, Plant Physiology, 2021, kiab345
    https://doi.org/10.1093/plphys/kiab345

    3. Yi Xiao, Jen Sloan, Chris Hepworth, Colin P. Osborne, Andrew J. Fleming, Xingyuan Chen, Xin-Guang Zhu*. Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves. Plant Cell Environ. 2021, 1–15.
    https://doi.org/10.1111/pce.13995

    4. Xin-Guang Zhu* and Jian-Kang Zhu, Precision genome editing heralds rapid de novo domestication for new crops. Cell (preview), 2021, 184(5):1156-1170
    https://doi.org/10.1016/j.cell.2021.02.004

    5. Faming Chen, Guangyong Zheng*, Mingnan Qu, Yanjie Wang, Ming-Ju Amy Lyu and Xin-Guang Zhu*. Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS increases rice leaf photosynthesis and biomass production in the field. Journal of Experimental Botany, 2021,72(5): 1836–1849.
    https://academic.oup.com/jxb/article/72/5/1836/6015054

    6. Mingnan Qu, Jemaa Essemine, Jianlong Xu, Guljannat Ablata, Shahnaz Perveen, Hongru Wang, Kai Chen, Yang Zhao, Genyun Chen*, Chengcai Chu*, Xinguang Zhu*. Alterations in Stomatal Response to Fluctuating Light Increase Biomass and Yield of Rice under Drought conditions. The Plant Journal, 2020, 104(5): 1334-1347.
    https://doi.org/10.1111/tpj.15004

    7. Tian-Gen Chang, Qing?Feng Song, Hong-Long Zhao, Shuoqi Chang, Changpeng Xin, Mingnan Qu and Xin-Guang Zhu*. An in situ approach to characterizing photosynthetic gas exchange of rice panicle. Plant Methods, 2020, 16:92.
    https://doi.org/10.1186/s13007-020-00633-1

    8. Ming-Ju Amy Lyu, Yaling Wang, Jianjun Jiang, Xinyu Liu, Genyun Chen and Xin-Guang Zhu*. What Matters for C4 Transporters: Evolutionary Changes of Phosphoenolpyruvate Transporter for C4 Photosynthesis, Frontiers in Plant Science, 2020, 11:935
    https://www.frontiersin.org/articles/10.3389/fpls.2020.00935

    9. Mingnan Qu, Jemaa Essemine, Ming Li, Shuoqi Chang, Tiangen Chang, Gen-Yun Chen and Xin-Guang Zhu*. Genome-Wide Association Study Unravels LRK1 as a Dark Respiration Regulator in Rice (Oryza sativa L.), International Journal of Molecular Sciences, 2020,21(14):4930.
    https://doi.org/10.3390/ijms21144930

    10. Jemaa Essemine, Mingnan Qu, Ming-Ju Amy Lyu, Qingfeng Song, Naveed Khana, Genyun Chen, Peng Wang, Xin-Guang Zhu*. Photosynthetic and transcriptomic responses of two C4 grass species with different NaCl tolerance. Journal of Plant Physiology, 2020, 253.
    https://doi.org/10.1016/j.jplph.2020.153244

    11. Jemaa Essemine, Ming-Ju Amy Lyu, Mingnan Qu, Shahnaz Perveen, Naveed Khan, Qingfeng Song, Genyun Chen and Xin-Guang Zhu*. Contrasting Responses of Plastid Terminal Oxidase Activity Under Salt Stress in Two C4 Species With Different Salt Tolerance. Frontiers in Plant Science, 2020, 11.
    https://doi.org/10.3389/fpls.2020.01009

    12. Shahnaz Perveen, Mingnan Qu, Faming Chen, Jemaa Essemine, Naveed Khan, Ming-Ju Amy Lyu, Tiangen Chang, Qingfeng Song, Gen-Yun Chen, and Xin-Guang Zhu*. Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice. Journal of Experimental Botany, 2020, 71(16):4944-4957.
    https://pubmed.ncbi.nlm.nih.gov/32442255

    13. Xin-Guang Zhu*, Donald R. Ort, Martin A.J. Parry and Susanne von Caemmerer*(2020), A wish list for synthetic biology in photosynthesis research, Journal of Experimental Botany, 71(7):2219–2225.
    https://doi.org/10.1093/jxb/eraa075

    14. 许大全*、朱新广*,创造“玉米稻”:禾谷作物高产优质的一个新战略,植物生理学报,2020, 56(7):1313-1320. (综述)

    15. 朱新广*,常天根,宋青峰,常硕其,王重荣,张国庆,郭亚,周少川, 数字植物:科学内涵、瓶颈及发展策略,合成生物学, 2020, 1(3):285-297. (综述)

    16. Shuoqi Chang, Tiangen Chang, Qingfeng Song,, Jun Wu, Yi Luo, Xiaolong Chen, Xin-Guang Zhu* and Qiyun Deng*. Architectural and Physiological Features to Gain High Yield in an Elite Rice Line YLY1, Rice, 2020, 13:60.
    https://doi.org/10.1186/s12284-020-00419-y [**]

    17. Honglong Zhao, Qiming Tang, Tiangen Chang, Yi Xiao and Xin-Guang Zhu*. Why an increase in activity of an enzyme in the Calvin Benson Cycle does not always lead to an increased photosynthetic CO2 uptake rate? – A theoretical analysis. in silico Plants. 2021, diaa009.
    https://doi.org/10.1093/insilicoplants/diaa009

    18. Tiangen Chang, Xin-Guang Zhu*. Systematic Optimization of Whole Plant Carbon Nitrogen Interaction (WACNI) to Support Crop Design for Greater Yield. BioRxiv. 2018.
    https://www.biorxiv.org/content/10.1101/286112v1

    19. Qingfeng Song., Xin-Guang Zhu*. Measuring Canopy Gas Exchange Using CAnopy Photosynthesis and Transpiration Systems (CAPTS). Methods in Molecular Biology. 2018, 1770:69-81.
    http://link.springer.com/protocol/10.1007/978-1-4939-7786-4_4

    20. Saber Hamdani, Naveed Khan, Shahnaz Perveen, Mingnan Qu, Jianjun Jiang, Govindjee and Xin-Guang Zhu*. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. Photosynthesis Research, 2018,139(1-3):107-121.
    https://link.springer.com/article/10.1007%2Fs11120-018-0589-6

    21. Pan Li, Tiangen Chang, Shuoqi Chang, Xiang Ouyang, Mingnan Qu, Qingfeng Song, Langtao Xiao, Shitou Xia, Qiyun Deng, Xin-Guang Zhu*.f Systems model guided rice yield improvements based on genes controlling source, sink and flow. Journal of Integrative Plant Biology, 2018, 60, 1154-1180.
    http://www.cqvip.com/QK/94176A/201812/6100093528.html

    22. Mingnan Qu, Guangyong Zheng, Jemaa Essmine, Saber Hamdani, Qingfeng Song, Hongru Wang, Chengcai Chu, Xavier Sirault and Xin-Guang Zhu*. Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity panel. Plant Physiology. 2017, 175(1):248-258.
    http://www.plantphysiol.org/content/175/1/248.long

    23. Yi Xiao and Xin-Guang Zhu*. Component of mesophyll resistance and their environmental responses. Plant Cell & Environment. 2017, 40(11):2729-2742.
    https://doi.org/10.1111/pce.13040

    24. Honglong Zhao, Yi Xiao, Xin-Guang Zhu*. Kinetic modeling of photorespiration. Methods in Molecular Biology. 2017, 1653: 203-216.
    http://link.springer.com/10.1007/978-1-4939-7225-8_14

    25. Qingfeng Song, Yu Wang, Mingnan Qu, Donald R Ort, Xin-Guang Zhu*. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency. Plant Cell & Environment. 2017, 40(12):2946-2957.
    http://onlinelibrary.wiley.com/doi/10.1111/pce.13041/full

    26. Qingfeng Song, Yu Wang, Mingnan Qu, Donald R Ort, Xin-Guang Zhu*. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency. Plant Cell & Environment. 2017, 40(12):2946-2957.
    http://onlinelibrary.wiley.com/doi/10.1111/pce.13041/full

    27. Yi Xiao, Tiangen Chang, Qingfeng Song, Shuyue Wang, Danny Tholen, Yu Wang, Changpeng Xin, Guangyong Zheng, Honglong Zhao, Xin-Guang Zhu*. ePlant for quantitative and predictive plant science research in the big data era. Quantitative Biology. 2017, 5(3):260-271.
    http://link.springer.com/article/10.1007/s40484-017-0110-9

    28. Tian-Gen Chang and Xin-Guang Zhu*. Source sink interaction: a century old concept under the light of modern molecular systems biology. Journal of Experimental Botany. 2017, 68(16).
    https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erx002

    29. Jemaa Essemine, Yi Xiao, Mingnan Qu, Hualing Mi, Xin-Guang Zhu*. Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa, L.) leaves under heat stress. Journal of Plant Physiology, 2017, 211:138-146.
    http://www.sciencedirect.com/science/article/pii/S0176161717300329